AM / RM / WAVESHAPING

A theoretical introduction into amplitude-modulation, ringmodulation and waveshaping is given in the "sound-synthesis" chapter 4.

AMPLITUDE MODULATION

In "sound-synthesis" the principle  of AM was shown as a amplitude multiplication of two sine oscillators. Later we've used a more complex modulators, to generate more complex spectrums. The principle also works very well with sound-files (samples) or live-audio-input.

Karlheinz Stockhausens "Mixtur für Orchester, vier Sinusgeneratoren und vier Ringmodulatoren” (1964) was the first piece which used analog ringmodulation (AM without DC-offset) to alter the acoustic instruments pitch in realtime during a live-performance. The word ringmodulation inherites from the analog four-diode circuit which was arranged in a "ring".

In the following example shows how this can be done digitally in Csound. In this case a sound-file works as the carrier which is modulated by a sine-wave-osc. The result sounds like old 'Harald Bode' pitch-shifters from the 1960's.

Example: 05F01.csd

<CsoundSynthesizer>
<CsOptions>
-o dac
</CsOptions>
<CsInstruments>

sr = 48000
ksmps = 32
nchnls = 1
0dbfs = 1


instr 1   ; Ringmodulation
aSine1 poscil 0.8, p4, 1
aSample diskin2 "fox.wav", 1, 0, 1, 0, 32
out aSine1*aSample
endin

</CsInstruments>
<CsScore>
f 1 0 1024 10 1 ; sine

i 1 0 2 400
i 1 2 2 800
i 1 4 2 1600
i 1 6 2 200
i 1 8 2 2400
e
</CsScore>
</CsoundSynthesizer>
; written by Alex Hofmann (Mar. 2011)

WAVESHAPING

coming soon..